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TECHNICAL NOTE D-113 

ANALYSIS OF THE DYNAMIC LATERAL STABILITY 

OF A DELTA-WING AIRPLANE WITH FREQUENCY-DEPENDENT 

STABILITY DERIVATIVES 

By Albert  E .  Brown and Albert  A. Schy 

SUMMARY 

An a n a l y t i c a l  invest igat ion has been made t o  determine the e f f e c t  
of frequency-dependent s t a b i l i t y  der ivat ives  on the l a t e r a l  s t a b i l i t y  
of a delta-wing airplane f o r  a f l i g h t  condition where t e s t  results had 
shown large var ia t ions  of the s t a b i l i t y  der iva t ives  with frequency over 
a range of frequencies.  
s i d e s l i p  are obtained by using the Fourier transform t o  solve the lateral  
equations of motion. I n  order t o  i l lustrate  the frequency e f f e c t s  of the 
s t a b i l i t y  der ivat ives ,  t i m e  h i s t o r i e s  ca lcu la ted  by using constant values 
f o r  these der iva t ives  are presented for  comparison. 

Time h is tor ies  of rolling veloc i ty  and angle of 

The r e s u l t s  of the invest igat ion show t h a t  the  frequency e f f e c t s  of 
the s t a b i l i t y  der ivat ives  can cause considerable changes i n  predicted 
airplane motions. Moreover, the results indicate  t h a t  amplitude e f f e c t s  
of these der iva t ives  can a l s o  be important i n  ca lcu la t ing  airplane 
responses. 

INTRODUCTION 

Currently, perturbed motions of a i rplanes are general ly  calculated 
on the assumption of constant aerodynamic coef f ic ien ts .  However, it 
has long been known that c e r t a i n  unsteady e f f e c t s ,  f o r  example, unsteady 
lift, downwash, and sidewash, produce aerodynamic lags  t h a t  cause these  
coef f ic ien ts  t o  depend on frequency of o s c i l l a t i o n .  
r e t i c a l  invest igat ions have t r e a t e d  unsteady e f f e c t s  on longi tudinal  
s t a b i l i t y .  However, except f o r  l i m i t e d  s implif ied analyses ( f o r  example, 
r e f .  1) l i t t l e  appears t o  have been done on the  corresponding problem f o r  
l a t e r a l  s t a b i l i t y .  
f a c i l i t i e s  (refs. 2 t o  4)  have provided a l l  the  important l a te ra l  s t a b i l i t y  
der iva t ives  of a delta-wing model a t  subsonic speeds under o s c i l l a t o r y  
conditions and show a la rge  e f fec t  of frequency on these der ivat ives ,  

A number of theo- 

Recently, wind-tunnel tests using dynamic t e s t i n g  
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par t icu lar ly  a t  medi um 
simplified approach t o  
calculations were made 

and high angles of a t tack .  I n  reference 2, i n  a 
evaluate frequency e f f e c t s  on l a t e r a l  s t a b i l i t y ,  
t o  determine the e f f e c t s  of unsteady s i d e s l i p  c 

derivatives on Dutch r o l l  c h a r a c t e r i s t i c s .  I n  t h i s  method values of the 
s t a b i l i t y  der ivat ives  a t  the  Dutch roll frequency a r e  used t o  obtain the 
roots  of the frequency-dependent c h a r a c t e r i s t i c  equation by i t e r a t i o n .  
The Dutch r o l l  roots  thus obtained seem t o  be a good approximation of 
the Dutch r o l l  c h a r a c t e r i s t i c s  i n  the presence of frequency-dependent 
s t a b i l i t y  der ivat ives .  
derivatives are based on a sustained harmonic o s c i l l a t i o n  and therefore  
i n  the s t r i c t  sense a r e  When 
considering response t o  a r b i t r a r y  inputs ,  it i s  necessary t o  consider a 
range of frequencies i n  order t o  obtain cor rec t  dynamic response charac- 
t e r i s t i c s .  I n  p a r t i c u l a r ,  the low-frequency c h a r a c t e r i s t i c s  a r e  impor- 1 
t a n t  i n  determining the response a f t e r  the f i r s t  f e w  seconds. Therefore 
the  frequency dependence of the  la teral  der ivat ives  a t  a l l  frequencies 
should be brought i n t o  the response calculat ions.  

However, Dutch r o l l  frequency-evaluated s t a b i l i t y  

only v a l i d  a t  the Dutch r o l l  frequency. L 
5 
6 

The object  of the present  inves t iga t ion  i s  t o  present  a general  
method for  incorporating frequency e f f e c t s  and t o  give some indica t ion  
of the significance of these e f f e c t s .  Osci l la tory data  on s i d e s l i p ,  
r o l l ,  and yaw derivat ives ,  presented i n  references 2 t o  4, are used t o  
calculate  t y p i c a l  lateral  motions of a delta-wing in te rceptor  by Fourier 
ana1ysi.s techniques. These motions are then compared t o  the motions ca l -  
culated by using zero-frequency or Dutch r o l l  frequency-evaluated sta- 
b i l i t y  der ivat ives .  Results of the o s c i l l a t i o n  t e s t s  t o  obtain l a t e r a l  
s t a b i l i t y  der ivat ives  have a l s o  shown some e f f e c t s  of amplitude of 
osc i l la t ion ,  p a r t i c u l a r l y  f o r  s m a l l  amplitudes and low frequencies.  
These e f fec ts  a r e  not compatible with l i n e a r  theory, and no rigorous 
analysis  w a s  attempted t o  include them. 
amplitude e f f e c t s  i s  presented by using a s implif ied q u a l i t a t i v e  approach. 

However, some discussion of the 

SYMBOLS 

The forces and moments are re fer red  t o  the p r i n c i p a l  body axes sys- 
t e m  shown i n  f igure  1. 

b wing span, f t  

CL 
L i f t  

2 
i 7 T  --pv s 

l i f t  coef f ic ien t ,  

Rolling moment rolling-moment coef f ic ien t ,  
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cz 



Cn yawing -moment coefficient, Yawing moment 
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acn Cn+ = - 

4v2 
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Lateral force lateral-force coefficient, CY 

- acY 
cyB ae - -  

D 

g 

h 

KXO 

20 
K 

k 

m 

N,n 

P 

P 

- 
P 

R 

r 

differential operator, d/ds 

acceleration due to gravity, ft/sec 2 

altitude, ft 

radius of gyration about principal longitudinal axis, 
nondimensionalized with respect to b 

radius of gyration about principal vertical axis, nondimen- 
sionalized with respect to b 

reduced-frequency parameter, ub/2V 

mass of airplane, W/g, slugs 

integers 

period of oscillation, sec 

rolling angular velocity, radians/sec except where noted in 
figures 
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nondimensional Laplace transform variable f ($) = e-$'F( s)ds 

rolling angular acceleration, radians/sec2 

amplitude of complex number 

yawing angular velocity, radians/sec 
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@O 

4J 

$0 

cu 

WDR 

yawing angular acceleration, radians/sec 2 

wing area, sq f t  

nondimensional time parameter based on span, 

t i m e  f o r  amplitude of osc i l la t ion  t o  change by a f a c t o r  of 2 
(pos i t ive  value indicates  a decrease t o  half  amplitude; 
negative value indicates  an increase t o  double amplitude) 

Vt/b 

t i m e ,  sec  

airspeed, f t / s e c  

weight of a i rplane,  l b  

angle of a t tack  with respect t o  wing chord plane, deg 

angle of s i d e s l i p ,  radians except where noted i n  f i g u r e s  

amplitude of o s c i l l a t i o n ,  s idesl ip ,  deg 

rate of change of angle of s ides l ip ,  radians/sec 

angle between w i n g  chord plane and pr inc ipa l  longi tudinal  
ax is ,  deg (see f i g .  1) 

i n c l i n a t i o n  of pr inc ipa l  longitudinal ax is  with respect  t o  
f l i g h t  path,  deg (see fig. 1) 

phase of complex number, radians 

r e l a t i v e  densi ty  f a c t o r ,  m/pSb 

a i r  density,  slugs/CU f t  

angle of r o l l ,  radians 

amplitude of o s c i l l a t i o n ,  roll, deg 

angle of yaw, radians 

amplitude of o s c i l l a t i o n ,  yaw, deg 

angular frequency, radians/sec 

nondimensional frequency parameter based on span, 

Dutch r o l l  frequency 

wb/V 
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The symbol s following the subscr ipt  of a der iva t ive  denotes the 
derivative re fer red  t o  the s t a b i l i t y  system of axes. Square brackets 
around a r a t i o  of two quant i t ies  indicate  the t r a n s f e r  funct ion r e l a t i n g  
the quant i t ies .  

- 

ANALYSIS 

Preliminary Remarks 

The interceptor  considered i n  the present invest igat ion w a s  assumed 
t o  have the  same lateral  s t a b i l i t y  der ivat ives  as those obtained from the 
o s c i l l a t i o n  t e s t s  of references 2, 3 ,  and 4. 
dimensional charac te r i s t ics  reasonable f o r  t h i s  delta-wing a i rp lane  a r e  
given i n  table I. 

Assumptions of mass and 

Since the experimental o s c i l l a t o r y  data showed p a r t i c u l a r l y  la rge  
e f f e c t s  of frequency for medium and high angles of a t tack ,  an angle of 
a t tack  of 20' w a s  se lected f o r  the present invest igat ion f o r  the air-  
plane in  l e v e l  f l i g h t  a t  an a l t i t u d e  of 60,000 f e e t  with a ve loc i ty  of 
611 f e e t  per  second. Variations of the lateral  s t a b i l i t y  der iva t ives  
with reduced frequency parameter a r e  presented i n  f igure  2. The s i d e s l i p  
derivatives were obtained f o r  only one amplitude i n  reference 2, as shown 
i n  f igure 2 ( a ) ,  whereas the roll and yaw derivat ives  of references 3 and 
4 ( f i g s .  2(b)  and 2 ( c ) )  were obtained over a range of amplitudes and 
showed marked amplitude e f f e c t s .  N o  data were avai lable  on the frequency 
dependence of side-force der ivat ives .  Because of the r e l a t i v e  unimpor- 
tance of side-force der ivat ives ,  it w a s  considered adequate t o  introduce 
the most s i g n i f i c a n t  as a constant and neglect the others .  From 

= -0.52 a t  an angle of a t t a c k  of 20'. 
cyP 

s t a t i c  t e s t s  ( r e f .  2) ,  

I n  order t o  apply l i n e a r  theory t o  the ca lcu la t ion  of frequency 
e f f e c t s ,  it i s  necessary t o  assume t h a t  the r o l l  and yaw derivat ives  are 
constant with amplitude of o s c i l l a t i o n .  However, i n  a s implif ied attempt 
t o  evaluate amplitude e f f e c t s ,  results are compared f o r  two sets of sta- 
b i l i t y  derivatives which were obtained from t e s t  resu l t s  a t  two amplitudes 
of roll o s c i l l a t i o n  (20° and 5 O )  and two amplitudes of yaw o s c i l l a t i o n  
(3' and 1.5'). In  f igures  2(b) and 2(c)  the curves representing the  
frequency-dependent der ivat ives  a t  l a r g e r  amplitudes of r o l l  and yaw 
( g o  = 20' and $o = 3') a r e  labeled A and are re fer red  t o  as "combina- 
t i o n  A , "  whereas those a t  lower amplitudes ( g o  = 5' 
labeled B and a r e  re fer red  t o  as "combination B." These combinations 
represent the l a r g e s t  and smallest  amplitudes f o r  which tes t  r e s u l t s  were 
avai lable  over an adequate frequency range. I n  order t o  obtain values 

and \Ira = 1.5') are 

.. 
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f o r  the der iva t ives  over the frequency range, curves were f a i r e d  through 
the t e s t  data t o  the steady-state values of the der ivat ives .  

Variations with reduced frequency parameter of the l a t e r a l  sta- 
b i l i t y  der ivat ives  which were selecte'd for  the present  invest igat ion 
a r e  shown i n  f i g u r e  3, converted t o  the system of pr inc ipa l  body axes 
presented i n  f i g u r e  1. 

Equations of Motion 

The nondimensionalized l inear ized  la teral  equations of motion f o r  
l e v e l  f l i g h t ,  r e f e r r e d  t o  the pr inc ipa l  body axes, a r e  as follows: 

Rolling : 

Yawing : 

Sideslipping: 

Solutions of the equations of motion a r e  presented f o r  D# and p 
i n  response t o  rolling-and yawing-moment coef f ic ien ts ,  s ince r o l l  ra te  
and s i d e s l i p  responses a r e  considered t o  be adequate t o  describe the 
l a t e r a l  dynamic charac te r i s t ics  of the a i rp lane .  By use of determinants, 
the following expressions f o r  the Laplace transforms of the desired solu- 
t i o n s  were obtained i n  the usual manner from equations (1): 



a 

where 
cients 
of the 

P1, P2, P3, P4, and Q a r e  polynomials i n  f x i t h  coef f i -  
t h a t  are functions of reduced-frequency parameter k (because - 
dependence of the s t a b i l i t y  der ivat ives  on k shown i n  f i g .  3) .  

These t r a n s f e r  functions a re ,  of course, simply the r a t i o  of the 
transform of the output t o  the transform of the input  and are a l s o  
ident ica l  t o  the  transforms of the responses t o  u n i t  - pulse inputs.  By 
simply replacing the Laplace transform variable  p i n  these expressions 
by i w ,  the Fourier transforms of the  t r a n s f e r  functions a r e  obtained. 
I n  t h i s  form the t ransfer  function i s  the familiar complex funct ion of 
the frequency known as t h e  "frequency respons<" function. 
wri t ten i n  terms of dimensional frequency w, nondimensional frequency E ,  
or reduced-frequency parameter k by using the r e l a t i o n  w = % = ak. 

It can be 

b b 
I n  terms of k, the desired Fourier transforms are:  

\ 

L 
3 
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The complex functions Pl, P2, F3, F4, and a r e  presented i n  
appendix A .  

Calculations 

Frequency-response charac te r i s t ics  and time h i s t o r i e s  of t r a n s i e n t  
motions i n  r o l l i n g  veloci ty  and angle of s i d e s l i p  were calculated from 
the t ransfer  functions presented i n  the preceding sect ion with frequency- 
dependent and with constant coef f ic ien ts .  The data of t a b l e  I and 
Cyp = -0.520 a r e  applicable t o  a l l  calculat ions.  The frequency-dependent 

solut ions were obtained by using the o s c i l l a t o r y  s i d e s l i p  der ivat ives  of 
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f igure  3(a) w i t h  l a rge-  and with small-amplitude combinations of the  
o s c i l l a t o r y  r o l l  and yaw derivat ives  from curves A and B of f igu res  3(b) 
and 3 ( c ) .  No attempt w a s  made t o  express the  t r a n s f e r  funct ions ana ly t -  
i c a l l y  i n  the  frequency-dependent cases. A t  any des i red  frequency, 
values of  the t r a n s f e r  functions were simply determined from the  values 
of the der iva t ives  a t  that  frequency. Enough frequency poin ts  were used 
t o  def ine adequately the frequency response over the frequency range of 
i n t e r e s t ,  which l i e s  between (u = 0 and approximately twice the  n a t u r a l  
frequency of the l a t e r a l  o s c i l l a t i o n .  

The inverse Fourier  transform methods and t a b l e s  of reference 5 
were appl ied t o  ca lcu la te  time h i s to r i e s  of response t o  a u n i t  impulse 
from the frequency-response cha rac t e r i s t i c s  of the frequency-dependent 
t r ans fe r  funct ions.  By numerical in tegra t ion  of these r e s u l t s ,  time 
h i s t o r i e s  of response t o  a s t ep  input were obtained. I n  these calcula-  
t i ons  the procedure of reference 5 was modified t o  use a varying f r e -  
quency i n t e r v a l  h i n  the numerical in tegra t ions .  I n  many cases the 
use of varying i n t e r v a l  s i z e  y ie lds  be t t e r  accuracy w i t h  less work, 
s ince i n t e r v a l  s i z e  can be t a i l o r e d  t o  the slope of the curve. The 
modified procedure i s  out l ined i n  an example i n  appendix B. 

For comparison with the frequency-dependent solut ions,  frequency- 
independent t r a n s f e r  functions were obtained from the s teady-s ta te  
(k = 0) values of t h e  osc i l l a to ry  s t a b i l i t y  der iva t ives  and from their  
values a t  the Dutch r o l l  frequency. 
obtained by i t e r a t i o n  of the  frequency-dependent c h a r a c t e r i s t i c  equa- 
t i on .  Corresponding t o  the large- and small-amplitude combinations of 
s t a b i l i t y  der iva t ives ,  the Dutch r o l l  o s c i l l a t i o n  occurred a t  reduced- 
frequency parameters of 0.084 and 0.079, respec t ive ly .  Values of t he  
constant s t a b i l i t y  der iva t ives  are given i n  table 11, and the so lu t ions  
of corresponding cha rac t e r i s t i c  equations a r e  presented i n  t ab le  111. 

The Dutch r o l l  frequency was 

Several  s i g n i f i c a n t  differences between the c h a r a c t e r i s t i c s  pre-  
d i c t ed  by the  s teady-state  der ivat ives  and those pred ic ted  by the 
der iva t ives  a t  the Dutch roll frequency are shown by the  roo t s  i n  
t ab le  111. With regard t o  Dutch r o l l  period and damping, it can be 
expected t h a t  the results obtained by the  i t e r a t i v e  method by using 
values of der iva t ives  a t  the Dutch roll frequency w i l l  be very accurate .  
Therefore, it i s  c l e a r  that the  steady-state der iva t ives  lead t o  a gross  
underestimation of the  damping and a small overestimation of the  per iod 
i n  t h i s  case. On the other  hand, for  the  real modes there  i s  no reason 
t o  expect the Dutch r o l l  frequency-evaluated der iva t ives  t o  give accurate  
answers. 
nat ions A and B)  p red ic t  s p i r a l  i n s t a b i l i t y ,  whereas the  s teady-state  
case pred ic t s  s p i r a l  s t a b i l i t y .  It i s  reasonable t o  assume t h a t  the  slow 
s p i r a l  mode i s  b e t t e r  described by the s teady-state  der iva t ives  and that 
the unstable s p i r a l  roo ts  are incorrect .  However, s ince Fourier  tech-  
niques a re  not va l id  f o r  an unstable system, it was considered necessary 

Table I11 shows, f o r  example, t h a t  the  i t e r a t i v e  cases (combi- 
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t o  obtain a d i r e c t  proof of the s t a b i l i t y  of the frequency-dependent 
system. The most convenient way t o  do this i s  t o  check the polar  p l o t  of 
the frequency response i n  the complex plane ( the  so-called Nyquist p l o t ) .  
Figure 4 shows a comparison of p$/Cz] polar p lo t s  and ind ica tes  that 
the frequency-dependent system f o r  e i t h e r  combination A o r  B i s  s t ab le .  
Actually, the stable cases ( f i g s .  4(a) and 4 ( c ) )  show one clockwise half- 
encirclement of the or ig in ,  but t h i s  i s  caused by the presence of a root  
w i t h  a pos i t ive  r e a l  p a r t  i n  the numerator. 
the charac te r i s t ic  equation of the lateral motion, has no unsta’ule roots  
(as shown i n  tab le  111) f o r  the steady-state case. 

- 

The denominator, which i s  

There i s  no enc i rc le -  
ment i n  e i t h e r  unstable case ( f i g .  4 (b ) )  because the unstable character-  L 
i s t i c  root (a  pole of the t r ans fe r  function) cancels the e f f e c t  of the 5 
numerator root  previously re fer red  t o .  The frequency responses and 6 
time h i s to r i e s  calculated f o r  these cases a r e  therefore  va l id .  Compara- 1 
ble  time h i s t o r i e s  f o r  the frequency-independent cases were obtained by 
the usual Laplace transform method. 

DISCUSSION OF RESULTS 

The frequency-response r e s u l t s  a r e  discussea first and then the 
t rans ien t  responses a re  compared. The three case& compared a r e  (a) the 
case where the s t a b i l i t y  der iva t ives  a re  dependent on frequency over the 
whole s ign i f icant  range from zero t o  twice the a i rp lane  Dutch r o l l  f r e -  
quency; (b) the case where the s t a b i l i t y  der ivat ives  are determined a t  
the Dutch r o l l  frequency and ( c )  the case where the s t a b i l i t y  der ivat ives  
a re  the steady-state values obtained a t  zero frequency. Results a r e  
shown for  frequency-dependent s t a b i l i t y  der ivat ives  obtained from tests 
a t  two levels  of o s c i l l a t i o n  amplitude. 

c 

Frequency Responses 

Frequency-response cha rac t e r i s t i c s  i n  r o l l ,  bp’/Cd and [@/Cn], 
and angle of s ides l ip ,  b/Cg and [;3/Cd, f o r  combination A are pre-  
sented i n  f igures  5(a), 5(b) ,  5 (c ) ,  and 5(d) ,  respect ively,  and, s i m i -  
l a r l y ,  fo r  combination B i n  f igures  6(a), 6(b) ,  6 (c ) ,  and 6(d) ,  respec- 
t i ve ly .  I n  these f igures ,  the main differences between the responses 
obtained w i t h  Dutch r o l l  frequency-evaluated (a,,R evaluated) s t a b i l i t y  
der ivat ives  and those obtained with frequency-dependent (a 
derivat ives  occur a t  low frequencies. Good agreement is  shown near the  
Dutch r o l l  frequency. A s  indicated i n  the r e s u l t s  of t ab l e  111, f i g -  
ures 5 and 6 a l s o  show that f o r  the steady-state der ivat ives  the Dutch 
r o l l  mode i s  much less damped and occurs a t  a lower frequency. It i s  
evident from these curves that the s teady-state  (or pseudostatic) 

dependent) 
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derivat ives  (ss-evaluated) give a poor representation of the la teral  
c h a r a c t e r i s t i c s .  However, the significance of the considerable dif-  
ferences between the Dutch r o l l  frequency-evaluated and frequency- 
dependent cases i n  the low-frequency range i s  not so easy t o  evaluate .  
The s ignif icance of these differences i s  best seen i n  the t r a n s i e n t  
responses, which are discussed i n  the following sect ion.  

It i s  i n t e r e s t i n g  t o  note t h a t ,  i n  addi t ion  t o  the considerable 
e f f e c t s  of the frequency-dependent s t a b i l i t y  der ivat ives  on the f r e -  
quency responses, there  a r e  considerable e f f e c t s  of amplitude of oscil- 
l a t i o n  a l s o .  These e f f e c t s  can be seen by comparing the frequency- 
dependent r e s u l t s  of f igures  5 and 6 and, t o  some extent,  the  i t e r a t i v e  
roots  of table 111. Their significance can be seen more c l e a r l y  by an 
examination of the t r a n s i e n t  responses. 

Transient Responses 

T ime  h i s t o r i e s  of r o l l i n g  velocity and angle of sideslip are pre-  
sented i n  f igure  7 f o r  a s t e p  rolling-moment input  and f igure  8 f o r  a 
s t e p  yawing-moment input.  These f igures  show a comparison of the 
motions which would be predicted by using s teady-state  der ivat ives ,  
Eutch r o l l  frequency-evaluated derivatives,  and frequency-dependent 
der iva t ives .  A comparison of the r e s u l t s  f o r  der ivat ives  obtained f o r  
the higher and lower amplitudes of o s c i l l a t i o n  i n  the wind-tunnel tests 
i s  a l s o  shown, but  f o r  the purposes of this study the e f f e c t s  of fre- 
quency are of primary i n t e r e s t .  

The case of the steady-state derivatives can be immediately d i s -  
missed, s ince it shows a Dutch r o l l  o s c i l l a t i o n  which is  much too l a r g e  
and l i g h t l y  damped. 
been pointed out i n  previous s tudies ,  t h a t  the pseudostatic der iva t ives  
are inadequate f o r  determining t h e  Dutch r o l l  c h a r a c t e r i s t i c s  of highly 
swept configurations a t  moderate t o  high angles of a t tack .  The la rge  
amplitude of the o s c i l l a t i o n s  is  of p a r t i c u l a r  i n t e r e s t ,  s ince it could 
not 'be  predicted from the charac te r i s t ic  roots  alone. 

This r e s u l t  merely confirms the f a c t ,  which has 

However, the most i n t e r e s t i n g  r e s u l t  shown by the t r a n s i e n t  motions 
i s  the  la rge  differences between the Dutch r o l l  frequency-evaluated 
motions and the frequency-dependent motions, which develop a f t e r  the 
f i r s t  few seconds. These large e f fec ts  i n  the predicted responses corre-  
spond t o  the low-frequency discrepancies shown i n  the frequency-response 
p l o t s  of f igures  5 and 6. 
ures, the importance of these discrepancies w a s  d i f f i c u l t  t o  evaluate 
without looking a t  the predicted time h i s t o r i e s .  The r e s u l t s  of f i g -  
ures 7 and 8 seem t o  indicate  that the i t e r a t i v e  method of using the 
Dutch r o l l  frequency-evaluated s t a b i l i t y  der ivat ives  i n  the ca lcu la t ion  

A s  mentioned i n  the discussion of those f i g -  
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of the lateral  motions of an a i r c r a f t  can lead t o  e r r o r s  whose magnitudes 
are comparable t o  those introduced by simply using the s teady-state  
der ivat ives .  These r e s u l t s ,  of course, apply only t o  those f l i g h t  con- 
di t ions where s t a b i l i t y  der ivat ives  a r e  s t rongly dependent on frequency. 

Comparison of motions incorporating frequency e f f e c t s  shows appreci-  
able  e f fec ts  of amplitude. The amplitude e f f e c t s  seem t o  a f f e c t  the 
motions as much as the frequency e f f e c t s ,  that is ,  the differences between 
the frequency-dependent motions f o r  combinations A and B are general ly  as 
la rge  as the  differences ( f o r  a given amplitude combination) between the 
frequency-dependent and the frequency-independent responses. This r e s u l t  L 
indicates t h a t  a complete analysis  must take i n t o  account amplitude 5 
e f f e c t s .  However, f o r  the purpose of the present invest igat ion,  the fre- 6 
quency ef fec ts  a r e  of primary i n t e r e s t ,  and the r e s u l t s  have shown that 1 
these can be important i n  calculat ing airplane responses. It i s  recon- 
mended that the amplitude e f f e c t s  revealed i n  the present  paper be inves- 
t i g a t e d  i n  a more d e t a i l e d  ana lys i s .  

CONCLUDING FENARKS 

The results of the invest igat ion t o  determine the e f f e c t s  of 
frequency-dependent s t a b i l i t y  der ivat ives  show, f o r  a f l i g h t  condition 
where t e s t  r e s u l t s  had shown large var ia t ions  of these der ivat ives  with 
frequency over a range of frequencies, that the frequency e f f e c t s  of 
the s t a b i l i t y  der ivat ives  can cause considerable changes i n  predicted 
airplane motions. Moreover, the r e s u l t s  ind ica te  that amplitude e f f e c t s  
of these der ivat ives  can a l s o  be important i n  calculat ing airplane 
responses. It i s  recommended that the amplitude e f f e c t s  revealed i n  the 
present  paper be invest igated i n  a more d e t a i l e d  ana lys i s .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  V a . ,  Ju ly  23, 1959. 
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APPENDIX A 

FREQUENCY -RESPONSE FUNCTIONS 

The Laplace transform (ref. 6) of the l a t e r a l  equations of motion 
(1) f o r  input C 2  o r  Cn yields  the following equations f o r  frequency- 

dependent der ivat ives  such as those plot ted i n  f igure  3 as functions of 
the reduced-frequency parameter k: 

where p' i s  the Laplace transform variable.  

By the use of determinants the expressions obtained from equa- 

t ions  ( A l )  f o r  9, l, 9, and - ' 
C Z  CZ Cn Cn 

are as follows: 

c 
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A$ + B ~ ; ~  + clp + D~ 
+ BF3 + C c 2  + DF + E 

+ B25 + C2 

AC4 + BF3 + C c 2  + Df; + E 

A@2 + €34-5 + C4 
+ Bf3 + Cf2 + 6 + E 

[ c J ( ~ , k )  = -4 
Ap 

Equations (A2) show the polynomials P1, P2, P3, P,, and Q which 
appear i n  equations ( 2 ) .  
defined as follows : 

The coef f ic ien ts  of the polynomials are 

/ 

+ k!,.(k)C . (k ) s in  4 - -c 1 CZ.(k)C (k) + L C  C .(k)Cz.(k) 4 P  3 16 yp P % 16 ‘P “P r 

1 



5 

d 
Q 
In 
I 

Crl 

c 



Cl = 2pbCn (k)cos 7 + -Cy 1 C, (k )  - k .(k)CL sin 7 
P 2 P r  2 

D1 = -C (k)CL s i n  7 nP 

3 2 
B2 = pb[Zz0 CL cos 7 - C (k)cos 7 - C, ( k ) s in  

"p r 

+ k (k)CL s i n  7 - k .(k)CL cos 7 4 5  4 nr 

L 

1 

C 3  = -2p$lP(k)cos 7 +k (k)CL sin 7 - k y  C l  (k) 

D 3  = Czp(k)CL sin 7 

2 Zb 2 P r  



3D 

L 
5 
G 
1 

+ k (k)CL cos 7 - k z . ( k ) C ,  s i n  7 
4 4 P  

Replacing the Laplace transform variable  by 2ik i n  equations (A2)  
y i e l d s  the expressions f o r  the polynomials i n  
follows : 

k of equations ( 3 )  as 

where i n  terms of the c o e f f i c i e n t s  of equations ( A 2 )  
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E = 1 6 ~  
- - 
B = -8B c = -J+c 

- - 
B1 = -4B1 

B2 = 2B2 

B3 = -4B3 

ii4 = 2 ~ 4  

c1 = 2c1 

c2 = c2 

c3 = 2c3 

c4 = c4 

- - 

- - 

- 

L 

1 



APPENDIX B 

ILLUSTRATIVE EXAMPLE OF THE USE OF UNEQUAL FREQUENCY 

. 

INTERVALS FOR DETERMINING THE TIME RESPONSE TO 

A U N I T  IMPULSE FROM FREQUENCY-RESPONSE DATA 

The present invest igat ion suggests a modification t o  use unequal 
frequency in te rva ls  i n  the procedure of reference 5 f o r  determining the 
time response t o  a u n i t  impulse from frequency-response data. In the  
modified procedure the choice of frequency i n t e r v a l s  used i n  the s tep-  
wise representat ion of the real component of the frequency response i s  
made on the basis of the l o c a l  shape of t h i s  curve. Where the r a t e  of 
change of the curve i s  large,  small i n t e r v a l s  are used t o  g e t  a satis-  
fac tory  f i t  of the curve, and where the r a t e  of change i s  smaller, 
l a r g e r  i n t e r v a l s  may Se used. In t h i s  way, a good f i t  f o r  the curve 
may be obtained, with correspondingly good accuracy i n  the calculated 
impulse response, by using considerably fewer i n t e r v a l s  than with con- 
s t a n t  in te rva ls ,  since then the  i n t e r v a l  s i z e  must be chosen uniformly 
s m a l l  t o  f i t  the most rap id  var ia t ions of the curve. When it i s  
desired t o  introduce a new frequency i n t e r v a l  i n  the stepwise repre- 
sen ta t ion  the only condition that  needs t o  be s a t i s f i e d  i s  t h a t  the 
value of frequency a t  which the new frequency i n t e r v a l  i s  introduced must 
be an in teger  multiple of t h i s  frequency i n t e r v a l .  The following summa- 
t ion ,  from equation (8) of reference 5 ,  has been shown t o  be a convenient 
numerical representation of the i n t e g r a l  which defines the impulse 
response i n  terms of the r e a l  par t  of the frequency response: 

2 s i n  z cos(2n - 1)z] 
Z 

f ( t )  = - h  rn[ 
d n=l  

Here i s  the value of the stepwise representat ion of 

the real p a r t  of the frequency response i n  the n th  frequency i n t e r v a l .  
The function i n  brackets i s  tabulated i n  reference 5 f o r  a large range 
of values of n and z .  The notation n = N has been changed from t h a t  
of reference 5 ,  n = 00, because i n  prac t ice  the summation goes t o  a 
f i n i t e  number when the r e a l  p a r t  rn becomes negl igible .  When unequal 
frequency in te rva ls  are used, the summation shown above simply becomes a 
sum of summations as shown i n  the example t h a t  follows. 
the modified procedure has been applied t o  the l i g h t l y  damped r o l l  rate 
response obtained with the steady-state-evaluated der ivat ives ,  which i s  

z = *t, and rn 
2 

For i l l u s t r a t i o n ,  
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defined by the following t r a n s f e r  function: 

A s  shown i n  f igure  9, frequency i n t e r v a l s  of 0.10, 0.25, and 0.50 radian 
per second, q, h.+y and DL03, respect ively,  were chosen f o r  the 

stepwise representat ion of the r e a l  component of the frequency response. 
The time response w a s  then readi ly  calculated from the following 
expression: 

L 
5 
6 
1 

s i n  22 cos(2n - 1 ) z 2  n=25 s i n  z1 cos(2n - l)zl n=2 
F ( t )  = 2 +b2 

n=21 z1 n = l  22 
ll ll 

s i n  z3 cos(2n - 1123 n=10 s i n  z3 cos(2n - 112 

z3 
+ E  

z3 n=6 l t  

22 = * -t, and 23 = rw3 -t 
2 2 

For comparison r e s u l t s  were a l s o  obtained with a frequency i n t e r v a l  of 
0.25 radian per second throughout the frequency range. I n  f i g w e  9 com- 
parison of the time responses obtained by numerical in tegra t ion  with the 
exact response obtained ana ly t ica l ly  shows t h a t  the response obtained with 
three frequency i n t e r v a l s  i s  i n  much b e t t e r  agreement with the exact 
response. It is  t o  be noted t h a t  t h i s  response w a s  obtained from 15 
values of amplitude whereas 20 values were used t o  obtain the response 
with the constant frequency i n t e r v a l .  

.. 
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TABLE I.- DIMENSIONAL AND MASS CHARACTERISTICS 

ASSUMED FOR AIRPLANE 

Weight, l b . .  . . . . . . . . . . . . . . . . . . . . . . . .  
2 g, f t / s e c  . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  
V, f t / s e c  . . . . . . . . . . . . . . . . . . . . . . . . . .  
Kx0 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K '  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Z O  

~ , d e g  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wing : 

Area, s q f t  . . . . . . . . . . . . . . . . . . . . . . . .  
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . .  
Sweepback of leading edge, deg . . . . . . . . . . . . . . .  
Span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  

Vert ical  ta i l :  
Area, s q f t  . . . . . . . . . . . . . . . . . . . . . . . .  
Span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . .  
Aspect r a t i o  . . . . . . . . . . . . . . . . . . . . . . . .  
Sweepback of leading edge, deg . . . . . . . . . . . . . . .  

24,811 

32 

136.38 

611 

0.012 

0 .  log 

1.2 

652 
38.8 
2.18 
60 

116 
15.9 
2.18 
42.5 
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P r o j e c t i o n  o f  

r e i  a t  i ve  wind I 

\ 

Figure 1.- Sketch showing pr inc ipa l  body axes system. Each view pre-  
sen ts  a plane of the axis system as viewed along the t h i r d  axis. 
Posit ive values of forces ,  moments, and angles a re  indicated by 
arrows. - 
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k 

(a )  S ides l ip  der ivat ives;  0, = k2 0 . 
Figure 2.- Variations of l a t e r a l  s t a b i l i t y  der iva t ives  with reduced- 

frequency parameter f o r  an angle of a t t a c k  of 20'. 
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n Steady-state  

A 
A A 

rn B 
k2CI p,s 

H 0 
n 

-4 L 

( b )  R o l l  der iva t ives ,  including amplitude e f f e c t s .  

Figure 2. - Continued. 
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( c )  Yaw der iva t ives ,  including amplitude e f f e c t s .  

Figure 2.- Concluded. 
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- Combinat ion A 

I 

(a) Frequency-dependent (b) Dutch roll frequency-evaluated 
s t a b i l i t y  der iva t ives .  s t a b i l i t y  der iva t ives .  

. 

- 37r 
2 

0 

(c )  Steady-state-evaluated s t a b i l i t y  der ivat ives .  

Figure 4.- Polar diagrams o f  frequency response 
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I- 

0 I 2 w , radians 3 /sec 4 5 

Figure 5.- Frequency-response characteristics in roll and sideslip for 
frequency-dependent and constant stability derivatives. Combination A. 
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Figure 5.- Continued. 
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Figure 5 .  - Continued. 
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'1. c* 

Cmcluded. 
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FigJ-e 6.- Frequency-response characteristics in roll and sideslip for 
frequency-dependent and constant stability derivatives. Combination B. 
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Figure 6.- Concluded. 
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.. 
a 

Combinat  ion 6 

(a) Rolling velocity. 

Figure 7.- Time histories of roll and sideslip motions to a step 
rolling-moment input. C l  = 0.01. 

. 
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Figure 7. - Concluded. 
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( a )  Roll ing ve loc i ty .  

Figure 8.- Time h i s t o r i e s  of r o l l  and s i d e s l i p  motions t o  a s t ep  
yawing-moment input .  C, = 0.01. 
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